15MAT11

First Semester B.E. Degree Examination, July/August 2021 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

Find the n^{th} derivative of $\cos x \cos 3x \cos 5x$. 1

(06 Marks)

Obtain the Pedal equation of the curve $r = 2(1 + \cos \theta)$.

(05 Marks)

Find the radius of curvature of the curve $x = a \log(\sec t + \tan t)$, $y = a \sec t$.

(05 Marks)

If $y = a \cos(\log x) + b \sin(\log x)$, show that $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$.

(06 Marks)

Show that the curves $r^n = a^n \cos n \theta$ and $r^n = b^n \sin n \theta$ intersect each other Orthogonally.

(05 Marks) (05 Marks)

Show that for the curve $r(1 - \cos\theta) = 2a$, ρ^2 varies as r^3 .

Obtain the Maclaurin's expansion of $log(1 + e^x)$ as far as the fourth degree terms.

(06 Marks)

b. Evaluate: Lt $\left[\frac{1}{x^2} - \frac{1}{\sin^2 x}\right]$.

(05 Marks)

c. If $u = f\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$

(05 Marks)

a. Evaluate : Lt $\left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$

(06 Marks)

b. If $u = \log \left(\frac{x^4 + y^4}{x + y} \right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.

(05 Marks)

c. If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at (1, -1, 0).

(05 Marks)

A particle moves along the curve, $x = 1 - t^3$, $y = 1 + t^2$ and z = 2t - 5.

Determine its velocity and acceleration.

Find the components of velocity and acceleration at t = 1 in the direction 2i + j + 2k.

(06 Marks)

b. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at (2, -1, 2).

(05 Marks)

Prove that Curl (grade ϕ) = $\overline{0}$.

(05 Marks)

- Find the directional derivatives of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along 2i j 2k. (06 Marks)
 - Show that $\vec{F} = 2xyz^2i + (x^2z^2 + z\cos(yz))j + (2x^2yz + y\cos(yz))k$ is a potential field and hence find its scalar potential. (05 Marks)
 - Prove that div(Curl A) = 0.

(05 Marks)

- 7 a. Obtain the reduction formula for $\int \sin^n x dx$. (06 Marks)
 - b. Show that the family of parabolas $y^2 = 4a(x + a)$ is self Orthogonal. (05 Marks)
 - c. Solve $y e^{xy} dx + (x e^{xy} + 2y)dy = 0$. (05 Marks)
- 8 a. Obtain the reduction formula for $\int \sin^m x \cos^n x dx$. (06 Marks)
 - b. Solve $\frac{dy}{dx} + \frac{y}{x} = y^2x$. (05 Marks)
 - c. A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature of the body at the end of 3 minutes. (05 Marks)
- 9 a. Find the rank of the matrix by elementary row transformation.

$$A = \begin{bmatrix} 2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}.$$
 (06 Marks)

- b. Apply Gauss Jordan method to solve the system of equations: 2x + 5y + 7z = 52; 2x + y z = 0; x + y + z = 9. (05 Marks)
- c. Show that the transformation : $y_1 = 2x_1 x_2 x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 x_2 x_3$ is regular and find the inverse transformation. (05 Marks)
- 10 a. Solve 20x + y 2z = 17; 3x + 20y z = -18; 2x 3y + 20z = 25 by Gauss Seidel method. (06 Marks)
 - b. Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$. (05 Marks)
 - c. Reduce the quadratic form $2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1 x_3$ to Canonical form. (05 Marks)